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The periplasmic oligopeptide binding component (OppA) of the oligopeptide permease found
in Gram-negative bacteria acts as a receptor for peptide transport across the cell membrane
and is a potential target for antibacterial drug design. OppA exhibits broad specificity, binding
to diverse peptides of 2-5 amino acid residues length. Crystallographic and calorimetric
measurements have been carried out by Tame et al. of the binding of 28 peptides of sequence
K-X-K to OppA, where X is a natural or nonnatural amino acid. Despite this extensive
experimental characterization, a clear relationship between structural and thermodynamic
parameters could not be readily identified, with a complicating factor being the observation of
varying numbers of water molecules at the binding interface in the different complexes.
Consequently, we have applied COMparative BINding Energy (COMBINE) analysis to derive
quantitative structure-activity relationships (QSARs) for these 28 OppA-tripeptide complexes.
This is the first application of COMBINE analysis to predict binding enthalpies and entropies,
and predictive QSAR models were obtained for these quantities as well as for binding free
energies. These QSAR models highlight several protein residues and bound water molecules
in the binding site, as well as the electrostatic desolvation energies of the protein and the
peptides, as responsible for most of the differences in binding thermodynamics between the
peptides studied. The QSAR models aid rationalization of the determinants of binding affinity
of the OppA:peptide complexes and provide guides for further ligand design. This study also
points to the general applicability of COMBINE analysis to estimating thermodynamic
parameters for protein-peptide complexes.

Introduction
The periplasmic oligopeptide binding protein (OppA)

of the oligopeptide permease acts as the initial receptor
for peptide transport across the cell membrane in Gram-
negative bacteria. To supply the cell with a variety of
peptide nutrients, OppA has broad specificity, binding
to peptides of 2-5 amino acid residues length and
diverse sequence.1-3 A quantitative structure-activity
relationship (QSAR) for OppA-peptide binding would
aid rational drug design in two ways. First, a QSAR
model could guide design of peptide-based antibiotics
to bind to OppA so that they can be transported into
the cell to take effect. Second, a QSAR model could guide
design of OppA inhibitors that block OppA-mediated
peptide transport. The latter strategy may, for example,
be useful against Lyme disease, the causative agent of
which is Borrelia burgdorferi. Genome sequence analy-
sis has shown that the B. burgdorferi bacterium has no
gene for amino acid synthesis.4 OppA is therefore critical
for the uptake of nutrients in this bacterium and
consequently a potential target for inhibitor design.

Recently, the binding to the OppA from Salmonella
typhimurium of a series of 28 tripeptides has been
studied by X-ray crystallography and isothermal titra-

tion calorimetry (ITC).5-8 These peptides have the
sequence Lys-X-Lys, where X is one of 20 naturally
occurring amino acids and eight nonnatural residues
(see Figure 1). The nonnatural residues have closely
related structures to the natural residues. Orn, Dab, and
Dap mimic lysine but have consecutively shorter side
chains; Nva and Nle have unbranched alkane chains
that are longer than that of alanine by one and two
carbon atoms, respectively; Hph has a side chain one
carbon atom longer than phenylalanine; Nap is similar
to tryptophan but has a naphthalene ring; and Chx is
constructed by replacing the phenyl ring in phenyl-
alanine by a cyclohexane ring. The crystal structures
of the OppA-tripeptide complexes were solved to good
resolution (1.75-2.30 Å). The crystallographic studies
demonstrate that OppA undergoes a conformational
change upon binding a peptide from an open to a closed
form. They show that all of the tripeptides bind to OppA
in equivalent extended conformations with the bound
peptide entirely buried in the interior of OppA. The
main chain and the N and C termini of the peptides
form strong parallel and antiparallel â-sheet hydrogen
bond networks with the binding site residues of OppA.
The side chains make few direct interactions with OppA
(see Figure 2). Instead, ordered water molecules are
found around the side chains of the bound peptides and
are believed to play a role in mediating binding.9-11
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The binding parameters of all 28 OppA-tripeptide
complexes have been obtained by ITC.5,6 The dissocia-
tion constant, Kd, and the enthalpy change, ∆H, were
directly measured from the ITC experiments. The free
energy change, ∆G, and the entropy change, ∆S, were
calculated from the measured quantities (see Table 1).
This extensive data set provides an opportunity to
investigate SARs in the OppA-peptide system in detail.
However, SARs for OppA-peptide binding are not
straightforward to identify. In Table 1, it can be seen
that binding of all of the peptides is accompanied by
unfavorable enthalpy changes (∆H) and favorable en-
tropy changes (∆S); therefore, binding is entropy driven.
Both enthalpy and entropy changes span a large range
(∆H: 62 and T∆S: 57 kJ mol-1 at 298 K), but the free
energy changes (∆G) differ relatively little (∼12 kJ
mol-1) among the 20 natural tripeptides, and both the
weakest (-25.9 kJ mol-1) and the tightest (-46.1 kJ
mol-1) peptide binders contain nonnatural residues. In
addition, the numbers of bound water molecules in the
binding site were observed to vary with the ligands,
suggesting that water molecules may play an important
role in determining protein-peptide binding. Davies et
al.6 tried to correlate binding affinity with structure by
using empirical scoring functions, including the LUDI
method,12 but failed to obtain a good correlation.

The lack of strong selectivity between ligands, the
flexibility of the binding partners, and the variability
in interfacial hydration make the OppA-peptide system
a demanding one for structure-based prediction of
binding affinities. Global empirical scoring functions,
such as LUDI, are designed with the aim of being
applicable to all systems. However, such scoring func-

tions display different levels of performance for different
systems and are limited in accuracy.13 In principle,
computations based on free energy perturbation theory,
exploiting molecular dynamics simulations for sampling
of conformations, can account for all of the relevant
features of the OppA-peptide complexes and should be
applicable to computing binding free energy differ-
ences.14-16 On the other hand, such calculations are
computationally demanding and thus difficult to apply
in ligand design projects. Here, we report the application
of COMparative BINding Energy (COMBINE) analy-
sis17,18 to the OppA-peptide system. The aim is to derive
a system specific QSAR model for estimating binding
free energy (or enthalpy or entropy) differences based
on energy-minimized structures of ligand-receptor
complexes. This is achieved through fitting of a model
using experimental binding parameters for a set of
receptor-ligand complexes before applying the model
to predicting binding parameters of further ligands.
COMBINE analysis can be applied to large data sets
with modest computational requirements.

The COMBINE method is based upon the assumption
that the binding free energy (∆G) can be correlated with
a subset of energy components determined from the
structures of receptors and ligands in bound and
unbound forms. In this study, the energy terms com-
puted are the electrostatic desolvation energies of OppA
and the peptides upon binding, ∆Gdesol

R and ∆Gdesol
L ,

respectively, and the Coulombic interactions, ∆ui
ele,

and Lennard-Jones interactions, ∆ui
vdw, between each

ligand and each protein residue (or interfacial water
region) in energy-minimized structures of OppA-

Figure 1. Structures of the 28 tripeptides of sequence Lys-
X-Lys. Only the central residue R2 is variant.

Figure 2. Stereoview of the overlay of four OppA-peptide
complexes (KGK, KEK, KKK, and KWK). Only the active site
residues of OppA are shown and labeled. The peptides are
shown in thick sticks. Glu32 is the only residue showing large
conformational variability in the different complexes, adopting
two alternative conformations (A and B). The number of bound
water molecules in the active site varies with the ligand. These
water sites were partitioned into three regions for COMBINE
analysis: left (WL), right (WR), and central (WC, any water
sites not in either WL or WR). See Materials and Methods
section for details.
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peptide complexes (see Materials and Methods section
for details). The binding free energy, ∆G, was estimated
as a weighted linear sum of these energy terms as given
in eq 1.

The contribution of each interaction energy term
is represented by its weight, namely, the parameter
wi

vdw, wi
ele, wdesol

R , or wdesol
L in eq 1, which is obtained by

PLS (partial least squares) analysis.
The COMBINE method has been proved success-

ful for deriving high quality QSAR models for a va-
riety of protein-ligand complexes including enzyme-
inhibitor,19-22 enzyme-substrate,23,24 and nuclear re-
ceptor-DNA complexes.25 The OppA-peptide system is
a novel test for the COMBINE method. It is challenging
because of its broad ligand specificity and the variation
in numbers of bound water molecules in the binding site.
On the other hand, the complete experimental data set
for 28 peptides of free energy (∆G), enthalpy (∆H), and
entropy (T∆S) of binding provide a unique opportunity
to derive QSAR models for all three thermodynamic
parameters by COMBINE analysis and to investigate
the relationships between these models. Indeed, this is
the first time that COMBINE analysis has been used
to derive models for ∆H and ∆S and this data set
provides an opportunity to assess the applicability of
the COMBINE analysis procedure to these thermody-
namic quantities. In addition to deriving a QSAR model
for ∆G using eq 1, we derived predictive models for ∆H
and T∆S by substituting ∆H or T∆S values, respec-

tively, for ∆G values in eq 1. These COMBINE models
serve to resolve some of the open questions about the
determinants of peptide binding to OppA.

Materials and Methods
Molecular Mechanics Modeling. The 28 crystal struc-

tures of OppA binding to tripeptides of sequence Lys-X-Lys
were retrieved from the Brookhaven Protein Data Bank (PDB).
The uranium ions and acetate ions (CH3-COO-) found in the
crystal structures of some complexes were assumed unimpor-
tant for this study and were removed. Thus, for each complex,
the coordinates of the OppA protein of 517 residues, the
tripeptide ligand, and a number of ordered water molecules
were used in this study.

The two cysteine residues in OppA were defined to make a
disulfide bond. The polar hydrogen atoms of OppA, the ligand,
and the water molecules were assigned by using the WHATIF
program.26-27 The protonation states of the 11 histidines in
OppA and the histidine in the KHK ligand were determined
as the following: six histidines (29, 91, 142, 161, 405, and 440)
in OppA were protonated on Hε and the other five (55, 75,
117, 371, and 517) on Hδ. The histidine in the KHK ligand
was protonated on Hε. The amino acid side chains of arginine,
lysine, aspartate, and glutamate residues of both OppA and
peptide, as well as the N and C termini of the peptides, were
treated as ionized. The amino groups on the nonnatural
residues (Dab, Dap, and Orn) were protonated (-NH3

+).
Because of poor resolution, Asp356 and Lys357 are missing

in the crystal structures of the complexes 1b52/KTK and 1b05/
KCK. These residues were modeled by using the complex 2olb/
KKK as a reference structure.

The terminal nitrogen atom of the side chain of Dab has
two conformations in the complex 1b4h/K-Dab-K, and confor-
mation A was arbitrarily selected for modeling. In addition,
most complexes contain partially occupied closely spaced pairs
of water sites in the binding pocket. For these pairs, only the
one with the least steric clash was treated as occupied.

The all atom AMBER 95 force field28 was used to obtain all
of the parameters for the protein, the ligands, and the water

Table 1. Experimental and Computed Parameters for the OppA-Tripeptide KXK Complexesa

no.
PDB
code peptide

∆Gexp
(kJ/mol)

∆Gpred
(kJ/mol)

∆Hexp
(kJ/mol)

∆Hpred
(kJ/mol)

T∆Sexp
(kJ/mol)

T∆Spred
(kJ/mol)

pred ∆H - T∆S
(kJ/mol)

Desol_P
(kJ/mol)

Desol_L
(kJ/mol)

1 1jet KAK -41.1 -43.4 20.1 11.9 61.1 50.3 -38.43 212.81 507.57
2 1b05 KCK -40.6 -42.5 7.9 15.3 48.2 53.9 -38.54 216.76 512.99
3 1b4z KDK -29.8 -51.0 8.1 -1.1 37.7 39.1 -40.21 228.44 534.32
4 1jeu KEK -38.9 -47.6 11.3 12.1 50.0 48.2 -36.1 245.57 547.81
5 1b40 KFK -41.5 -41.4 22.0 17.7 63.2 54.8 -37.12 218.27 532.10
6 1b3l KGK -33.6 -43.2 14.1 4.5 47.5 46.1 -41.64 198.57 495.56
7 1b3f KHK -39.3 -40.0 20.6 18.0 59.8 60.5 -42.54 231.71 503.16
8 1b3g KIK -38.3 -41.4 20.5 13.8 58.6 54.3 -40.44 228.90 497.45
9 2olb KKK -31.6 -31.7 39.4 48.0 70.8 76.5 -28.52 228.90 661.54
10 1b9j KLK -33.9 -40.9 24.6 17.2 58.3 56.2 -39.04 224.91 515.76
11 1b32 KMK -40.5 -39.7 14.6 24.1 54.9 60.7 -36.65 232.13 528.78
12 1b5i KNK -40.2 -40.6 7.7 11.7 47.9 51.6 -39.86 227.47 512.95
13 1b46 KPK -30.1 -42.9 16.6 12.0 46.5 51.5 -39.47 214.58 511.14
14 1b5j KQK -42.4 -40.2 11.4 24.1 53.4 61.9 -37.87 222.60 540.71
15 1qka KRK -33.8 -31.6 36.0 38.5 69.7 70.8 -32.32 218.61 651.59
16 1b51 KSK -42.0 -43.0 8.9 17.2 50.6 54.3 -37.09 215.16 527.48
17 1b52 KTK -40.6 -42.0 17.3 15.9 57.6 53.9 -38.02 217.85 515.93
18 1qkb KVK -41.9 -40.2 22.4 16.9 64.3 56.1 -39.28 229.57 508.33
19 1jev KWK -39.2 -37.6 29.3 30.8 68.2 68.7 -37.91 247.72 528.36
20 1b58 KYK -37.5 -37.3 20.7 24.9 57.9 62.7 -37.87 242.09 527.85
21 1b0h K-Nap-K -38.2 -39.9 20.8 18.9 59.0 59.3 -40.41 238.81 501.61
22 1b1h K-Hph-K -40.3 -39.9 7.20 18.6 47.4 57.8 -39.3 226.13 512.48
23 1b2h K-Orn-K -25.9 -30.1 69.4 43.1 95.3 82.6 -39.46 241.04 653.39
24 1b3h K-Chx-K -35.4 -39.6 20.4 20.2 56.6 60.3 -40.17 234.23 508.24
25 1b4h K-Dab-K -31.1 -30.5 44.4 45.0 75.4 80.2 -35.29 231.34 695.69
26 1b5h K-Dap-K -34.3 -32.6 44.7 48.1 79.0 74.8 -26.71 224.91 697.28
27 1b6h K-Nva-K -44.7 -40.3 7.93 18.1 52.4 57.2 -39.07 229.82 505.60
28 1b7h K-Nle-K -46.1 -41.0 19.6 16.9 65.5 54.7 -37.79 221.42 515.26

a All experimental values are from refs 5 and 6. All thermodynamic measurements were carried out in 50 mM sodium phosphate
buffer at pH 7.0 and 298 K. Desol_P and Desol_L are the computed electrostatic desolvation energies of the protein and ligand (peptide),
respectively. Highest and lowest values of each parameter are shown in italic.

∆G ) wdesol
R ∆Gdesol

R + wdesol
L ∆Gdesol

L +

∑
i

wi
vdw∆ui

vdw + ∑
i

wi
ele∆ui

ele + C (1)
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molecules except the atomic partial charges of the side chains
of the nonnatural residues (Nap, Hph, Orn, Chx, Dab, Dap,
Nva, and Nle). For most nonnatural residues, the partial
charges were assigned by analogy to their natural counter-
parts: Dab, Dap, and Orn referred to lysine; Hph referred to
phenylalanine; and Nva and Nle referred to alanine. For Nap
and Chx, the atomic partial charges were assigned by using
the AMBER potential in the InsightII (version 2000) package.29

The xLEaP module of AMBER6.030 was used to obtain the
topology and coordinate files of each complex. Then, energy
minimization was performed by following the same protocol
as described in ref 22.

Binding Energy Decomposition for Chemometric
Analysis and Treatment of Water. In the COMBINE
analysis, the interaction energy (arising from Coulombic and
Lennard-Jones interactions) between the receptor and the
ligand was decomposed on a per residue basis by using the
program COMBINE1.0 (provided by A. R. Ortiz). The AMBER
topology and coordinate files of the minimized complex were
used as input and a distance-dependent dielectric constant, ε

) r, was used for calculating the Coulombic interaction
energies.

The interfacial water molecules were treated as extra
protein “residues” while the other ordered water molecules
were discarded from the minimized structures. The COMBINE
analysis procedure requires the same number of energy
descriptors for all of the complexes. Consequently, all of the
complexes must have the same number of water residues. This
meant that due to the variation in the number and position of
water molecules in different OppA-peptide complexes, each
water molecule could not be assigned to its own individual
residue. Instead, the water molecules in each complex were
partitioned into three spatially defined regions, each of which
was treated as a residue. These three regions are, with respect
to the central residue of the peptide, the left (WL), central
(WC), and right (WR) parts of the interfacial water (see Figure
2).

The left region, WL, contains one or no water molecule,
depending on the conformation of Glu32 of OppA. Glu32 is
the only residue showing large conformational variability in
the different complexes and adopts two alternative conforma-
tions. In five complexes, it adopts conformation A (1b2h/K-
Orn-K, 1b3f/KHK, 1qka/KRK, 1jev/KWK, and 2olb/KKK) and
in the other 23 complexes, it adopts conformation B. The water
WL forms a hydrogen bond with Glu32 in conformation B but
is released from the binding site by Glu32 in conformation A.
The right region, WR, contains two water molecules that make
a salt link to Arg404, but one water molecule is displaced by
the big aromatic side chains of Trp and Nap in complexes 1jev
and 1b0h. The central region WC contains the water molecules
close to the central residue of the tripeptide, which vary in
number from two to six. The partition of water molecules and
the alternative conformations of Glu32 are shown in Figure
2, using complexes 1b3l/KGK, 1jeu/KEK, 2olb/KKK, and 1jev/
KWK as examples. WL, WC, and WR were considered as three
extra residues of the protein in COMBINE analysis.

Electrostatic Desolvation Energy Calculation. The
crystallographic studies demonstrate that OppA undergoes a
conformational change from the open form before binding to
the closed form after binding and that OppA completely
encloses the ligand. The desolvation effect is believed to play
an important role in OppA-peptide binding. The electrostatic
contribution to the desolvation energy of the protein, ∆Gdesol

R

(or the ligand, ∆Gdesol
L ), was defined as the loss of the electro-

static interaction energy between the solvent and the protein
(or the ligand) upon binding, as calculated by the two step
procedure proposed by Perez et al.:20 (i) calculate the electro-
static interactions between the protein (or the ligand) and the
surrounding solvent in the absence of the ligand (or the
protein), (ii) calculate the electrostatic interactions between
the protein (or the ligand) and the surrounding solvent with
ligand (or protein) bound but in the absence of the partial
charges of the ligand (or the protein). The electrostatic

desolvation energy (∆Gdesol
R or ∆Gdesol

L ) is the difference be-
tween the electrostatic energies computed from the two steps.

The program UHBD6.131 was used to implement the con-
tinuum electrostatic calculations by solving the Poisson-
Boltzmann equation using a finite difference method. The
interior dielectric constant of both protein and ligand was set
to 2, and the solvent dielectric constant was set to 78 with an
ionic strength of 150 mM and ionic radius of 1.5 Å. A probe of
radius 1.4 Å and a surface with 400 points per Å2 were used
to calculate the solvent accessible surface and define the
dielectric boundaries. The coarse grid spacing was set to 0.80
Å, and the fine grid spacing was set to 0.225 Å. Both the coarse
grid and the fine grid were dimensioned to 110 × 110 × 110.

Before doing the UHBD calculations, the minimized struc-
tures of all of the complexes were superposed with the
minimized structure of the unbound OppA (PDB entry code
1rkm) to ensure the same reference coordinates. Then, a
separate source code was written to convert the superposed
structures of the complexes to qcd format files for input to
UHBD6.1, with all water molecules removed. Both steps one
and two above used the bound forms of proteins and peptides
in complexes. The calculated ∆Gdesol

R and ∆Gdesol
L values are

listed in Table 1.
Chemometric Analysis. In the 28 OppA-tripeptide com-

plexes, the ligands are closely superimposable and structural
variance of the ligands takes place only in the second residue
while the other two residues make identical interactions with
OppA. Therefore, only the interactions between the second
residue of the ligand and each of the 517 protein residues and
each of the three extra water residues WL, WC, and WR were
taken into account. (Similar results were obtained when the
interactions of the whole ligand, or of all three residues
individually, were computed.) Each complex was described by
520 Coulombic energy variables, 520 Lennard-Jones energy
variables, and two desolvation energies, totaling 1042 x-
variables. The y-variable was assigned as enthalpy change,
∆H, entropy change, T∆S, or free energy change, ∆G. The
GOLPE4.5.1 program32 was used to carry out the chemometric
analysis.

First, a principal component analysis (PCA) was performed
to investigate the distribution of the 28 complexes in the
energy space defined by the 1042 x-variables. The distances
between complexes were measured by the PCA scores. Then,
a PLS analysis was carried out to correlate the x-variables and
the y-variable and yielded initial PLS models of varying
dimensionality. In this step, the x-variables showing no
variation in the complexes (the sum of the squares of deriva-
tion from the average value is smaller than 10-7 kcal mol-1

(4.2 × 10-7 kJ mol-1)) were removed and about 800 x-variables
were maintained to build the initial PLS models. The x-
variables were not scaled, and tests of scaling procedures
showed that they did not result in better models. Leave-one-
out cross-validation Q2 values were in the range of 0.5-0.6.
To remove the noisy variables and improve the predictive
abilities of the PLS models, an x-variable selection procedure
consisting of a D-optimal preselection and a fractional factorial
design (FFD) was performed for up to five latent variables.
The D-optimal preselection removed nearly half of the x-
variables without affecting model quality, and the FFD further
removed a few x-variables while retaining uncertain variables.
Less than 400 x-variables were left to build the final PLS
models. These models have significantly higher Q2 values and
slightly higher R2 values than the initial PLS models. The
results of leave-one-out cross-validation are given in Table 2.
Tests were performed with leave-two-out cross-validation and
with cross-validation on five randomly chosen groups, and
slightly lower Q2 values were obtained.

Results and Discussion

PCA. First, a PCA of the matrix of computed energy
terms for the 28 complexes was performed. The score
plot of the first two PCs (PC1 and PC2) is shown in
Figure 3. Most complexes cluster together in this plot
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and have positive scores for both PC1 and PC2. The
exceptions are the three ligands with central residues
Gln, Ser, and Asn, as well as the seven ligands with
charged central residues. The ligands with negatively
charged central residues (Asp and Glu) and the ligands
with positively charged central residues (Lys, Orn, Dab,
Dap, and Arg) are separated distinctly by both PC1 and
PC2, indicating their significant differences in the
energy space defined by the 1042 energy variables. PC2
appears to separate the positively charged central
residues by size. In PC3 and PC4 (not shown), the
distribution of the complexes is different and cannot
easily be related to physicochemical properties such as
charge and size. As in PC1 and PC2, the peptides with
nonpolar central residues tend to cluster together in
PC3 and PC4. For brevity, the unique name of the
central residue of the tripeptide was used to represent
the ligand and the complex in the following sections.

PLS Models. PLS analysis to correlate the computed
energy terms with ∆H, T∆S, and ∆G values was
performed as described in the Materials and Methods
section. The statistical parameters of the PLS models
for ∆H, T∆S, and ∆G correlations are given in Table 2.
Both ∆H and T∆S models are predictive in cross-

validation of models constructed for all 28 complexes.
On the other hand, when the 28 complexes are used to
derive a model for ∆G, the predictive ability is poor (Q2

< 0.2). A predictive model for ∆G is, however, obtained
when constructed using only 23 complexes, with the five
excluded complexes being Asp, Glu, Leu, Gly, and Pro.
The optimal dimensionalities of the ∆H, T∆S, and ∆G
models are four, four, and three latent variables,
respectively. The relatively smaller standard deviation
in the error of predictions (SDEP) value in the ∆G model
than in both ∆H and T∆S models corresponds with the
smaller variation of the experimental ∆G values than
those of ∆H and T∆S values. The predicted ∆H, T∆S,
and ∆G values at the optimal dimensionalities are listed
in Table 1 and plotted in Figures 4-6, respectively.

The constant terms in the three models are all
negative and more negative than any predicted ∆H,
T∆S, or ∆G value. This means that together, the
variable terms in the models disfavor binding. They do
this to varying extents depending on the identity of the
central residue. This can be interpreted as the constant
term representing the favorable binding of the tripep-
tide, excluding the effect of the central residue. Only
the variation of the central residue is then accounted
for in the COMBINE models.

The constant terms at the optimal dimensionalities
are in good agreement with the Gibbs equation ∆G )

Table 2. Predictive Performances of the COMBINE Modelsa

data
set

no.
complexes #LV R2 Q2

SDEP
(kJ/mol)

constant C
(kJ/mol)

∆H 28 3 0.76 0.64 8.36 -86.90
4 0.83 0.66 8.15 -131.40
5 0.85 0.62 8.60 -108.50

T∆S 28 3 0.78 0.68 6.55 -32.35
4 0.83 0.73 6.02 -53.37
5 0.86 0.74 5.88 -40.36

∆G 23b 2 0.74 0.61 2.84 -49.55
3 0.83 0.74 2.34 -75.87
4 0.85 0.73 2.39 -68.60

a #LV is the number of latent variables of the model. The models
with the optimum number of latent variables are shown in italic.
Q2 is the cross-validated predictive performance and is given by
Q2 ) 1 - [∑i)1

n (yexp(i) - ypred(i))2]/[∑i-1
n (yexp(i) - 〈yexp〉)2] where ypred(i)

corresponds to the value of the quantity predicted with the model
for complex i, yexp(i) is the experimental value of the quantity for
complex i, and 〈yexp〉 is the average experimental value of the
quantity for the complete set of n complexes. R2 is the equivalent
of Q2 calculated for fitting. SDEP is the standard deviation in
cross-validated prediction and is given by SDEP ) {[∑i)1

n (yexp(i) -
ypred(i))2]/n}1/2. The constant C is as given in eq 1 for each
COMBINE model. b The five outliers in the ∆G models are the
complexes 3, 4, 6, 10, and 13 with central residues D, E, G, L,
and P, respectively.

Figure 3. Score plot of the first (PC1) and second (PC2) PCs
for the 28 complexes. Each complex is labeled by the name of
the central residue R2.

Figure 4. Plot of experimental vs predicted ∆H values (kJ/
mol) for the 28 complexes from leave-one-out cross-validation
at four latent variables.

Figure 5. Plot of experimental vs predicted T∆S values (kJ/
mol) for the 28 complexes from leave-one-out cross-validation
at four latent variables.
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∆H - T∆S; i.e., there is only a 2 kJ/mol deviation
between the constant term in the ∆G model (-76 kJ/
mol) and the difference in constant terms of the ∆H and
T∆S models (-131 - -53 ) -78 kJ/mol). Therefore,
we also computed estimates of ∆G for each complex by
computing values of ∆H - T∆S from predictions of the
∆H and T∆S models at four latent variables. These ∆H
- T∆S values are listed in Table 1 for comparison with
the ∆G model. Although both ∆H and T∆S models are
predictive in cross-validation for the complete set of 28
complexes, the predicted ∆H - T∆S values show poor
correlation with the experimental ∆G values, with a
correlation coefficient of only 0.18 for the 28 complexes.
Even for the 23 complexes included in the ∆G model,
the predicted ∆H - T∆S values have a much lower
correlation coefficient (0.61) than the directly predicted
∆G values do (0.86).

As shown in Table 1, the outliers for the ∆H - T∆S
prediction differ from those for the ∆G model. The five
complexes with largest the ∆G - (∆H - T∆S) error
values are Orn (13.5 kJ/mol), Asp (10.4 kJ/mol), Pro (9.4
kJ/mol), Nle (8.3 kJ/mol), and Gly (8 kJ/mol), of which
only Asp, Gly, and Pro are outliers in the ∆G model.
Orn shows the greatest deviation and also has a large
prediction error in the ∆H model. In fact, Orn can be
considered an outlier in the three experimental observ-
ables: it has the largest ∆H and T∆S values and
smallest ∆G values among the 28 complexes, and there
are significant gaps between Orn and the next closest
complex for each of these values. This means that the
chemometric procedure tends to predict Orn to be more
like the other complexes than it is.

In general, the discrepancy between the ∆H - T∆S
and the ∆G predictions may be due to the larger SDEP
values of the ∆H and T∆S models relative to the ∆G
model. This is due to enthalpy-entropy compensation:
∆G values cover a relatively small range and are given
by the subtraction of quantities of larger absolute
magnitude that vary over a larger range. Therefore, the
subtraction of predicted T∆S values from predicted ∆H

values does not yield as accurate ∆G values as those
obtained in the directly derived ∆G model.

Identification of Important Energy Contribu-
tions. To investigate the contributions of the individual
energy descriptors to the PLS models, the PLS normal-
ized coefficients were computed and these are plotted
in Figures 7 -9 for ∆H, T∆S, and ∆G models, respec-
tively. It can be seen that only a few energy descriptors

Figure 6. Plot of experimental vs predicted ∆G values (kJ/
mol) for the 28 complexes from leave-one-out cross-validation
at three latent variables. The external predicted values of the
five outliers in the ∆G model are shown by crosses and labeled
by the one letter names of the central residues.

Figure 7. Plot of PLS normalized coefficients of variables in
the ∆H model. The residues and variables with significant
coefficients are labeled.

Figure 8. Plot of PLS normalized coefficients of variables in
the T∆S model. The residues and variables with significant
coefficients are labeled.

Figure 9. Plot of PLS normalized coefficients of variables in
the ∆G model. The residues and variables with significant
coefficients are labeled.
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significantly contribute to the models. In other words,
the differences in binding affinities of the 28 tripeptides
can largely be explained by a few protein residues and
their interactions, along with electrostatic desolvation
energies.

In the ∆H model, the significant variables are the
ligand and the protein electrostatic desolvation energies;
the Coulombic interaction energies of protein residues
Glu32, Glu276, and Asn436 and the water region WR;
and the Lennard-Jones energies of protein residue
Glu32 and the water regions WC and WR. These energy
descriptors, with the exception of the Lennard-Jones
energy of WC and the Coulombic energy of WR, are also
highlighted as the most significant variables in the T∆S
model. These energy variables have coefficients of the
same sign in both models. This means that computed
∆H and T∆S values vary in the same direction with
variation of the structures of the peptide complexes.
This is consistent with the striking enthalpy-entropy
compensation observed in OppA-peptide binding.

In the ∆G model, the significant variables are the
protein desolvation energy; the Coulombic interaction
energies of protein residues Glu32, Glu36, Glu276,
Arg404, Arg413, Asp419, and Asn436; and the
Lennard-Jones energies from protein residue Asn436
and the water region WR. The ligand desolvation
energy, despite varying from 495 to 697 kJ/mol over the
data set, has no significant contribution to the ∆G
model, although it does contribute to the ∆H and T∆S
models. In fact, the ligand desolvation energy is signifi-
cant in the initial ∆G model before the FFD variable
selection. Its absence in the final model may be due to
several factors. First, it might come from cancellation
effects due to entropy-enthalpy compensation. Second,
it might be due to the incomplete data set used for the
∆G model. Third, it may be due to the fine balance
between terms that contribute to the ligand desolvation
energy. For example, the shorter chain Dpp peptide has
a larger desolvation energy than the Lys peptide. This
is unexpected when considering chain length and the
exposure of the charge on the end of the side chain but
can be understood when taking into account the effect
on ligand desolvation of differences in charge-charge
interactions within the peptides. Finally, it may be
because of the water molecules in the binding pocket.
Their number varies according to the particular ligand,
and they therefore affect relative ligand desolvation
energies and may be able to compensate ligand desol-
vation penalties. The lack of dependence of relative
binding affinity on ligand desolvation for this set of
peptides may be one reason that OppA can bind to such
a diversity of peptide sequences.

In contrast, the protein desolvation energy contributes
to the model with the second largest positive coefficient,
indicating that the desolvation of the protein strongly
disfavors binding. In general, a larger ligand causes a
greater desolvation cost to the protein than a small
ligand does. This is due to its larger volume of low
dielectric that is brought close to the protein. Interfacial
water molecules have a minor effect on the variation of
protein desolvation energy with different ligands as they
do not perturb the proximity of the peptide backbone
to the protein. Therefore, one strategy to strengthen the

binding of a tripeptide KXK to OppA is to reduce the
size of residue X.

Arg 404 lies opposite residue X of the peptide. The
Coulombic interaction from Arg404 is a significant
variable in the ∆G model with a large PLS coefficient,
but surprisingly, it is absent in both the ∆H and the
T∆S models. In fact, Arg404 is significant in the initial
models of both ∆H and T∆S but was removed from these
models during the FFD variable selection, this being the
main change in significant variables after variable
selection. The fact that Arg404 is important for the ∆G
model but not the final ∆H and T∆S models could be
due to the different data sets used for these models. The
∆H and T∆S models are derived from the set of 28
complexes, which includes complexes with peptides with
both positively and negatively charged residues. The ∆G
model, on the other hand, is derived from a data set
from which peptides with negatively charged residues
are excluded. Consequently, the PLS and variable
selection procedure may be able to detect a predictive
relation between the Arg 404 Coulombic interactions
and peptides with neutral or positively charged middle
residues (as for the ∆G model), but this is obscured
(probably due to modeling or experimental inaccuracies)
when peptides with negatively charged residues are
present (as for the ∆H and T∆S models).

The importance of electrostatic desolvation energy
terms to the predictive ability of the COMBINE models
is different for the three thermodynamic parameters.
Exclusion of these terms from the models had the
greatest effect on the T∆S model, resulting in a drop in
the Q2 value of about 0.3 and a reduction in the
optimum number of latent variables from four to three.
It had a modest effect on the ∆G model, resulting in a
drop in the Q2 value of about 0.1 and a reduction in the
optimum number of latent variables from three to two,
and it had almost no effect on the predictive ability of
the ∆H model (with the optimum number of latent
variables staying constant at four). The electrostatic
desolvation terms are free energy terms that implicitly
include the entropic effects of water upon binding. All
other terms included in COMBINE analysis are inter-
action energies with no explicit entropic component.
Therefore, it is physically reasonable that the electro-
static desolvation terms are important for representing
entropic effects and have the greatest influence on the
T∆S model. This also highlights the importance of
including electrostatic desolvation terms in COMBINE
analysis of systems demonstrating enthalpy-entropy
compensation, with differences in binding entropy over
the set of complexes analyzed. This is supported by the
importance of electrostatic desolvation energies ob-
served in COMBINE models for the binding affinity
of a series of inhibitors to human immunodeficiency
virus (HIV)-1 protease.20 HIV-1 protease-inhibitor
binding has been shown in recent calorimetry experi-
ments33 to be predominantly entropy driven with en-
tropy-enthalpy compensation over a similar range to
that observed in OppA-peptide binding.

Of the seven protein residues highlighted in the ∆G
model, Glu32, Glu36, Arg404, Arg413, and Asp419 are
in the first shell of the binding site whereas Asn436 and
Glu276 are located behind Glu32 and Arg404, respec-
tively (see Figure 2). Glu276 forms a stable salt link to
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Arg404. Asn436 has no direct interaction with Glu32
in the conformation B adopted in most complexes but
forms a hydrogen bond with the oxygen Oε2 of Glu32
of conformation A in complexes Arg, Lys, Orn, His, and
Trp. Glu32 with Asn436 and Arg404 with Glu276 flank
the central pocket of the binding site, which notably
discriminates against positively charged central resi-
dues by Coulombic interactions, as Glu32 and Glu276
show negative coefficients and Arg404 and Asn 436
show positive coefficients in Figure 7.

It appears that the favorable charge-charge interac-
tion between Glu32 and a positively charged ligand
disfavors binding. The crystal structures of the com-
plexes show that the oxygen Oε1 of Glu32 is always
hydrogen bonding to the nitrogen Nε of His405, and this
interaction is hypothesized to stabilize the bound (closed)
form of OppA since it is not present in the unbound
form. Of the five positively charged ligands (Arg, Lys,
Orn, Dab, and Dap), three (Arg, Lys, and Orn) form
hydrogen bonds with Oε2 of Glu32 and Glu32 adopts
conformation A in these complexes. If, as in most
complexes, Glu32 adopted conformation B for these
positively charged ligands, Oε2 of Glu32 would point
away from the peptide to a water molecule and Oε1 of
Glu32 would be within hydrogen-bonding distance of the
side chain terminal nitrogen of Arg, Lys, or Orn. This
would mean that the peptide would cause strong
hydrogen-bonding competition with Nε of His405. To
protect the stability of the bound (closed) form of OppA,
Glu32 is rotated from conformation B to conformation
A, allowing ligand-hydrogen bonding to Oε2 of Glu32.
This conformational change is assumed to be energeti-
cally unfavorable. But even so, the positive charges of
the central residues of the peptides must still compete
with His405. One favorable side effect of the conforma-
tional change is the release of one bound water molecule
from the binding site (region WL). This water release
likely results in entropy gain, but this is not strong
enough to provide compensation. Consequently, the
generally energetically favorable charge-charge inter-
action with Glu32 finally leads to an unfavorable effect
on binding affinity due to the less favorable position of
Glu32.

WR is the only water region highlighted in the ∆G
model, and the negative Lennard-Jones energy coef-
ficient of WR indicates that very close contact between
the ligand and the two water molecules of WR favors
binding. Therefore, this term suggests that a large X
residue in the KXK peptide would be more favorable
than a small one. This is in opposition to the effect of
the protein electrostatic desolvation term, which indi-
cated that a small X residue would be more favorable
and reflects the fact that many terms combine and
compensate to produce the overall binding affinity. The
roles of the other two water regions, WL and WC, are
small in the ∆G model, although they show more
variation in interaction energy and number of water
molecules than WR. WR makes a similar Lennard-
Jones contribution to the T∆S model. For the ∆H model,
WR again makes Lennard-Jones interactions repre-
senting packing with the peptide but also contributes
through electrostatic interactions.

To assess the importance of the water region interac-
tion terms for the COMBINE models, we also built

models excluding these terms. These models showed
very small reductions in predictive performance (<0.1
units for Q2). However, the optimal number of latent
variables reduced from four to three for both ∆H and
T∆S models. While, at first sight, this might seem
advantageous (similar predictive ability with fewer
adjustable parameters), closer inspection shows that
there are notable changes in the PLS coefficients, which
make physically based understanding of the models
derived without water interaction terms more difficult.
For example, the PLS coefficient for the Coulombic
interaction with Glu276 changed sign in the T∆S model
from positive with water terms included to negative
with water terms excluded. It disappeared in the ∆H
model with water terms excluded but retained a nega-
tive coefficient in the ∆G model. This results in the
situation in which entropically favorable interactions
with Glu276 are unfavorable to free energy, which is
surprising given the entropically driven binding ob-
served experimentally. This indicates that energy terms
included in the COMBINE models are implicitly rep-
resenting physical interactions that are not explicitly
modeled, including those of the interfacial water when
water interaction terms are excluded. Consequently,
COMBINE models with similar Q2 values are obtained
with and without water interaction terms.

Outliers in the Model for Binding Free Energy.
As shown in Table 2 and Figure 6, there are five outliers
in the ∆G model: Asp, Glu, Leu, Gly, and Pro. Their
binding affinities are significantly overpredicted in the
∆G model. This indicates that there must be some
unfavorable energetic contribution missing from the
COMBINE analysis. Considering that only the bound
conformations of the peptides were taken into account
in the COMBINE analysis, this overprediction of bind-
ing affinity could arise from the energetics of peptide
conformational changes upon binding. This seems fea-
sible for Asp, Glu, Leu, and Gly but not Pro.

(i) Asp and Glu. It is likely that the negatively
charged Asp and Glu make favorable charge-charge
interactions in the Lys-Asp(Glu)-Lys tripeptides in
solution.34 These intramolecular interactions will be
disrupted upon binding, and this will have an unfavor-
able effect on binding affinity.

(ii) Leu. Analysis of rotamers with the InsightII
software showed that the side chain of the bound Leu
in the crystal structure (with ø1 ) -80° and ø2 ) 83°)
does not occupy any of the rotameric states in the
rotamer library. It is the only case in which the central
residue in the peptide-OppA complexes adopts a non-
rotameric side chain conformation. The conforma-
tional change of the Leu peptide to this less stable
nonrotameric form upon binding from solution disfavors
binding. Potential of mean force calculations of the
relative free energies of leucine rotamers indicates that
the conformation observed in the OppA crystal structure
is about 6-12 kJ/mol above the most energetically
favorable Leu rotamers.35 Thus, this rotamer change
upon binding could account for the 7 kJ/mol over-
prediction of binding affinity for the Leu peptide.

(iii) Gly. As compared to other amino acids, Gly has
more backbone freedom in solution. The loss of this
conformational freedom upon binding leads to a greater
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entropic penalty on binding affinity for Gly than for
other amino acids.

(iv) Pro. In contrast to Gly, Pro has less backbone
freedom than other amino acids due to the side chain
making a ring by covalent attachment to the backbone
N atom. The backbone of the bound Pro is in a standard
conformation with its ring in the commonly observed
UP conformation. So, the fact that Pro is an outlier
remains difficult to explain by peptide conformational
freedom loss or unfavorable intramolecular energy
changes upon binding.

Because of the lack of experimental data about the
structures of the unbound tripeptides in solution, it is
not possible to provide further proof or quantitative
calculations for the above explanations. Addition of an
energy variable to describe loss of side chain entropy
upon binding by the change in the number of rotamers
available did not improve the model. No attempt was
made to model the change in intramolecular energy
upon binding as, in the absence of experimental data
on their solution conformations, this would require
extensive conformational sampling of the peptides in
water.

Concluding Remarks

COMBINE analysis has been used to correlate struc-
tural and thermodynamic quantities (∆H, T∆S, and ∆G)
for OppA-peptide binding. The predictive models de-
rived demonstrate that the COMBINE method is ap-
plicable to estimation of ∆H and T∆S values, as well
as ∆G values, despite the problems posed by enthalpy-
entropy compensation. Interfacial water molecules,
often ignored in methods of estimating binding affinity,
are explicitly treated in COMBINE analysis and con-
tribute to the QSAR models.

This study provides the first quantitative QSAR
model for OppA-peptide binding. It reveals interactions
important for differences in binding affinity, including
the contribution of protein electrostatic desolvation. It
should thus provide a useful guide for further design
studies on the OppA system. Furthermore, this study
points to the applicability of COMBINE analysis for
studying the binding thermodynamics of other protein-
peptide complexes.
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